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Abstract 

Objectives: Cleanup of subsurface unexploded ordnance (UXO) at military installations and 

training ranges is an expensive and time-consuming challenge. While the goals in UXO 

remediation are very clear, to cleanup all UXO as efficiently as possible, little effort has focused 

on designing robust and efficient signal processing strategies with the specific performance goal 

dictated by the regulators in mind.  This project originated from the hypothesis that performance 

and robustness may be improved over the classical approaches by specifically considering the 

desired operating point of the UXO discrimination strategy (100% detection) during the 

construction of each stage of the signal processing sequence that is needed to make the “dig/no 

dig” decision. From a statistical decision theory perspective, operating at this specific point has 

implications that may impose a strong preference for certain processing techniques in the 

UXO/clutter discrimination process. The objective of this project was to conduct a preliminary 

investigation into the potential benefit of awareness of the specific performance criterion (100% 

UXO detection) in each stage of the UXO discrimination processing strategy. This work should 

lead to new strategies for training and classification, and may suggest guidelines for all stages of 

data processing. 

Technical Approach: This project consisted of several large-scale classification studies to carefully 

analyze the performance of different classification algorithms and the effects of training data when 

operating at 100% UXO detection. The data used in this study was collected during the Camp San 

Luis Obispo demonstration with the MetalMapper TEM sensor.  The various classification 

algorithms included in this study provide a diverse representation of the different theoretical 

approaches to pattern classification, and allow for comparison of the effect of different classifier 

properties on performance at the 100% detection operating point.  

Results: Across a large number of experiments, strong performance was consistently observed with a 

nonparametric classification algorithm that makes decisions locally in feature spaced based on 

neighboring training samples.  Such a classifier shares properties with the library-matching classifiers 

that are often used in the UXO research community for classification based on the polarizability 

curves.  Additionally, preliminary analysis of a method for evaluating the outputs of the model 

inversion procedure shows potential for identifying potential outliers (which drive performance at the 

100% detection operating point) for more careful follow-on analysis. 

Benefits: This study provides evidence that the desire to operate at 100% detection may lead to a 

preference for certain algorithms in the different stages of the discrimination strategy.  Careful 

consideration and selection of methods used in each stage of discrimination strategy may greatly 

impact performance at the 100% detection goal.  This study provides preliminary work towards 

guidelines for classifier design, use of training data, model inversion, and feature selection in the 

UXO discrimination algorithm that will eventually lead to more robust methods of data 

processing. 
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Objective  

The objective of the work conducted in support of MR-1715 was to determine the degree of 

benefit achieved when using a “performance operating-point aware” approach to UXO 

discrimination.  A series of experiments were conducted to investigate two basic research thrust 

areas: (1) a re-consideration of the classifier methods and training set design for operating at 

100% UXO detection, and (2) development of guidelines for the data pre-processing, model 

inversion, and feature selection based on quantification of the sensitivity of the 100% UXO 

detection operating point to these prerequisite data processing stages.  This investigation sought 

to assess the impact of specifically considering the performance criteria required by the 

regulators (100% UXO detection) during the design of each stage of the UXO discrimination 

processing strategy.  From a statistical decision theory perspective, operating at PD=100% has 

implications that may impose a strong preference for certain processing techniques in the 

UXO/clutter discrimination process.  The goal of this work was to produce a proof-of-concept 

that adopting this perspective when designing a UXO/clutter discrimination strategy would 

suggest favoring or avoiding certain methods and techniques in the end-to-end data processing 

strategy.   

This SEED project addresses Statement of Need (SON) MMSEED-10-01.  There is a 

clear need to effectively and cost-efficiently remediate UXO contaminated lands, rendering them 

safe for their current or intended civilian uses.  Understandably, the UXO regulatory cleanup 

community is strongly averse to the possibility of leaving behind UXO; it is a significant liability 

when land committed to public use is later found to be contaminated.  Therefore, to ensure 

efficient performance at the desired operating point for the UXO/clutter discrimination strategy 

(find all of the UXO while at the same time reducing the number of false alarms), it may be 

necessary to take the specific performance goals into consideration during the design of the end-

to-end discrimination strategy.  This proposed basic research program was to serve as a proof-of-

concept to support our hypothesis that an awareness of the 100% UXO detection operating point 

during design of the end-to-end discrimination strategy will lead to guidelines and preferences 

for certain techniques and algorithms at many stages of the overall discrimination strategy. 

Background 

There are many areas in the United States and throughout the world that are contaminated by or 

potentially contaminated by unexploded ordnance.  In the United States alone there are 1900 

Formerly Used Defense Sites (FUDS) and 130 Base Realignment and Closure (BRAC) 

installations that need to be cleared of UXO.  Using current technologies, the cost of identifying 

and disposing of UXO in the United States is estimated to range up to $500 billion.  Site specific 

clearance costs vary from $400/acre for surface UXO to $1.4 million/acre for subsurface UXO 

[1].  These approaches, however, usually require significant amounts of human analyst time, and 

thus those additional costs, which are currently necessary parts of ongoing demonstrations, are 
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not factored into these numbers.  Thus, there is a clear need to effectively and cost-efficiently 

remediate UXO contaminated lands, rendering them safe for their current or intended civilian 

uses.  Development of new UXO detection technologies with improved data analysis has been 

identified as a high priority requirement for over a decade.   

Several sensor modalities have been explored for the detection and identification of 

surface and buried UXO.  These include electromagnetic induction (EMI), magnetometry, radar, 

and seismic sensors.  These sensors generally experience little difficulty detecting UXO, thus 

detection does not create the bottleneck that results in the high cost of remediating sites.  The 

primary contributor to the costs and time associated with remediating a UXO-contaminated site 

is the high false-alarm rate caused by the significant amounts of non-UXO clutter and shrapnel 

typically found on battlefields and military ranges.  A significant contributing factor in the high 

false alarm rate is the requirement for high confidence in the removal of all UXO during site 

cleanup.   

On sites where anomalies are well separated, statistical signal processing algorithms that 

exploit recent advances in sensor design and phenomenological modeling have been successfully 

employed and substantial improvements in performance over traditional “mag and flag” 

approaches have been demonstrated [2-7].  Recent results from the former Camp San Luis 

Obispo and Camp Butner demonstrations clearly demonstrate that good discrimination can be 

effected, and in the case of the Camp Sibert demonstration, all UXO could be identified with a 

substantial reduction in the number of “dig” declarations.  Using nomenclature from decision 

theory, we can refer to this operating point as the PD = 1 operating point, which corresponds to a 

UXO probability of detection (PD) equaling unity.  This is the desired operating point in the 

UXO discrimination scheme; results seen at recent demonstrations indicate that the sensors and 

algorithms have matured to the point that, under relatively benign test conditions, it can be 

considered more specifically.  The UXO regulator community is highly averse to the possibility 

of leaving behind UXO; it is a significant liability when land committed to public use is later 

found to be contaminated.  Thus, it is recommended that the research community recognize and 

adopt this operating point as their standard for measuring performance, such that they are able to 

meet the needs of the UXO cleanup community.  If the technology is incapable of meeting 

regulators needs, then they will not be willing to adopt it. 

Since government regulators require reliable assurances that all UXO have been cleared 

from a site during cleanup operations, the development of algorithms for discriminating UXO 

from clutter (reducing cleanup expenses) may benefit if such operating conditions are 

specifically considered during the design phase.  Standard classical approaches to detection and 

discrimination are not guaranteed to perform well at the PD = 1 operating point.  The PD = 1 

operating point is defined by the last UXO to be found; thus performance is constrained by the 

most “anomalous” or outlier UXO in the target set.  This perspective could significantly alter the 

framework of the UXO discrimination strategies, by focusing specifically on robustly identifying 

the most difficult UXO target.  From a statistical decision theory perspective, operating at the PD 



4 

 

= 1 point has implications that may impose a strong preference for certain processing techniques 

in the UXO/clutter discrimination process.  There are many stages in current state-of-the-art 

UXO discrimination strategies, such as phenomenological model inversion, feature generation 

and selection, and selection of a classification algorithm.  If each stage of the discrimination 

relies on standard, typical methods found in the research literature for model inversion, feature 

selection, and classifier training, it is reasonable to expect that outliers would be present in the 

output of each stage since classical approaches are often designed specifically to solve the most 

common or expected scenario, and accept outliers as part of the distribution of possible 

observations.  To maximize performance of the UXO discrimination strategy at the PD = 1 

operating point, and to satisfy the government regulators, it is an interesting basic research 

question to propose that each stage actively attempts to mitigate the occurrence of outlier UXO.  

In decision theory, this difference can be distinguished as the difference between error 

minimization and cost minimization. 

 Any UXO discrimination strategy is capable of two types of error: making a “dig” 

declaration for a harmless clutter object (termed a “false alarm” or “false positive”), and making 

a “no dig” declaration for a UXO (termed a “miss” or “false negative”).  As both of these 

scenarios (false alarms and misses) are errors, an error-minimization approach would be equally 

motivated to avoid either of these events, since both contribute equally to the overall number of 

errors.  However, a more appropriate consideration in UXO cleanup scenarios is cost, rather than 

errors.  Costs, or penalties, can be assigned to the different combinations of “dig / no dig” 

declaration and true anomaly class.  Since the cost of a miss (not making a “dig” declaration for 

a UXO) far exceeds the cost of false alarm (unnecessarily making a “dig” declaration for a 

harmless clutter object), a cost-minimizing decision criterion will shift the bias towards making 

the least costly errors (i.e. false alarms).  This has previously been considered by Carin et al. [8] 

using a POMDP-based approach to policy implementation.  The framework was able to consider 

various costs, such as the cost of making an observation with another sensor or the cost of 

making either a “dig” or “no dig” declaration given the data available.  However, as will be 

outlined in the next section, an alternative approach to minimizing the number of dig 

declarations to reach the PD =1 operating point may yield better performance when considering 

potential drawbacks associated with the cost-minimizing approach.  Rather than being too 

dependent on sensitivity to the cost estimates, as are all cost-minimization approaches such as 

[8], our hypothesis is that we may be able to achieve better performance at the PD = 1 operating 

point by first analyzing the behavior and system dynamics of the UXO discrimination strategy, 

examining how outliers are produced and handled at various stages in the data processing, and 

developing guidelines for processing architecture that will mitigate such events. 

General UXO discrimination strategy framework 

Many of the current approaches to UXO discrimination currently utilized by the research and 

cleanup community can be described within the general framework presented in Figure 1.  In this 

general framework, there are four stages in the UXO discrimination process that occur between 
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Figure 1.  General framework of UXO/clutter discrimination strategy, from raw data to “dig / no dig” declaration.   

There are four stages: 1) data pre-processing, 2) model inversion, 3) feature generation and selection, and 4) 

classification using labeled training data. 

the measurement of the raw sensor data and making a “dig / no dig” declaration.  The first stage 

is data pre-processing, which includes the selection of sensor measurements and time samples, 

and application of any normalization or background correction.  The second stage of processing 

involves model inversion to fit the measured sensor data.  Models can incorporate various 

assumptions about the shape of the EMI signatures as a function of time and have different 

physical or empirical motivations.  Often, it is possible to make a trade-off between model rigor 

and expressivity.  Model inversion and numerical optimization is a significant field of research in 

and of itself.  Various methods can be considered to manage the presence of local minima, high-

dimensionality of the parameter space, and data quality.   

  The third stage of processing uses the phenomenological model parameters estimated via 

the model inversion to generate features for UXO/clutter discrimination.  Relevant features can 

be generated based on knowledge regarding the phenomenological models; ideally, physics 

suggests that the features should correspond to the intrinsic characteristics of the anomaly in 

order to be useful for discriminating UXO from clutter.  A large set of features, which commonly 

occurs for more advanced multi-axis sensors, can be reduced through downselection using 

feature selection techniques.  There are many relevant feature selection techniques that can be 

differentiated based on their methods for generating candidate sets of features and scoring the 

suitability of different feature combinations.  Alternatively, some investigators use the entire 

model fit and perform library-matching with the polarizability curves.  Such an approach fits 

within the framework presented in Figure 1; the “features” from which decision outputs will be 

generated are the raw model inversion outputs, generated via a 1-to-1 mapping rather than a 

more complex feature generation scheme that aggregates the raw outputs into a more concise set 

of values.  The final stage of the UXO discrimination strategy is classification.  In this stage, the 

features associated with an anomaly of interest are analyzed with respect to a set of features from 

training samples using a classification algorithm, and a score is assigned to the new anomaly by 

the classifier.  Based on various threshold and decision criteria, the score can be converted into a 

“dig / no dig” declaration.  The design of the first two processing stages benefits from a high 

level understanding of geophysics, sensor phenomenology, and numerical optimization, whereas 

the design of the final stage benefits from a strong background in statistical signal processing and 
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pattern recognition.  Feature generation and selection requires experience in both areas to be 

performed in an optimal fashion. 

 Several groups have successfully implemented various techniques for each stage of the 

UXO/clutter discrimination framework (e.g. [8-13]).  Data pre-processing can include 

background correction and sensor position uncertainty modeling (e.g. [14, 15]).  Model inversion 

has been performed using standard gradient descent approaches and stochastic, evolutionary 

inspired methods [16-18].  Published results have used the generalized likelihood ratio test 

(GLRT), support vector machine (SVM), and artificial neural networks (ANN) as classifier 

methods in UXO/clutter discrimination.  These are standard signal processing solutions to the 

types of problems posed by each stage of the UXO discrimination strategy.  However, it has not 

been documented whether these techniques are optimized for the operating point required by the 

UXO cleanup task (PD = 1).  Therefore, given the extensive number of parameters and options 

associated with each stage, it is reasonable to suspect that certain techniques may perform better 

at the required operating point than others.  Additionally, a set of guidelines for use may be 

beneficial for improving performance at the PD = 1 operating point. 

Relevant theory 

In this section, the relevant theory and concepts that motivate the methods and techniques 

applied in this project will be described briefly.  There is a relevant body of work from the 

decision theory, pattern recognition, and machine learning literature that can be leveraged in this 

effort to maximize the performance of a UXO discrimination strategy designed to perform at a 

specific operating point.  This section will also highlight the novelty of the work performed in 

this investigation. 

 Statistical decision theory offers several methods for determining the operating point of 

the UXO/clutter discrimination strategy, such as the Bayesian approach for calculating the 

expected cost of each decision or the Neyman Pearson criterion that optimizes performance at a 

user-defined number of false alarms or missed detections.  However, the drawback of any of 

these criteria associated with decision theory is that they are applied ex post, i.e. once the 

classifier outputs are already determined.  These approaches find the desired operating point on 

the ROC curve, but do not explicitly improve performance at that point.  To improve 

performance, the ROC curve which describes all possible operating points for the classification 

system needs to also improve.  As is well established, there can be substantial variability within 

the ROC curves produced by a classifier on a fixed set of testing and training data, simply by 

changing the parameters associated with most classifiers.  Beran and Oldenburg observed such 

trends in comparisons of a support vector machine, a probabilistic neural network, and library 

based techniques on data sets from two sensors, and recommended a careful approach to the 

design of a classification method for UXO discrimination [19]. In the UXO discrimination task, 

we are willing to sacrifice performance at operating points not of interest in UXO/clutter 

discrimination to improve performance at PD = 1.   Therefore, what is proposed in this research is 
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a systematic methodology to determine what characteristics of the classifier might produce ROC 

curves with better performance at the PD = 1 operating point.  Decision criteria, either cost 

minimization or Neyman Pearson, can help find that point on the ROC, but they alone cannot 

improve performance at the PD = 1 operating point in the classifier design stage.   

 A body of work has focused on the area of cost-sensitive classification.  Recognizing the 

distinction between minimizing error and minimizing cost, other researchers have sought to 

modify error-minimizing classifiers, such as the decision tree and support vector machine, to 

operate in cost-minimization scenarios.  Two dominant approaches have emerged from this 

research area.  The first method is termed stratification [20].  In stratification, the set of training 

data is modified, either through weighting or resampling of the data points, such that the 

proportion of samples from each class is consistent with the costs.  To implement such a 

technique in the UXO discrimination task would require significant modification to the design of 

the training data set.  For the UXO cleanup task, labeled samples for training the classifier are 

already of limited availability and difficult to collect; thus such extensive modification to the 

training set is difficult to support.  Additionally, given the highly disproportionate costs of 

missed UXO and false alarms, it is anticipated that the stratification framework would simply 

reject all clutter samples and retain only UXO.  The second technique for cost-sensitive 

classification is MetaCost [21], a wrapper method that extends cost-sensitive classification to any 

classification algorithm.  In MetaCost, the training samples might be relabeled according to their 

“cost-minimizing label” if it differs from the true training sample label.  The classifier is then re-

trained using the cost-minimizing class labels for the training data.  These cost-minimization 

based techniques (stratification, MetaCost, and the previously-mentioned POMDP-based 

approach to policy implementation) may not yield ideal results due to their dependency on the 

estimated costs for the possible errors.  The elegant simplicity of Bayesian cost-minimization 

may hamper its use in UXO discrimination, since PD = 1 can only be satisfied theoretically if the 

cost of a missed UXO is asymptotically approaching infinity, and “dig” declarations are made 

for all anomalies.  Even when provided with more realistic estimates of cost, the decisions will 

be quite sensitive to the estimates of cost, resulting in potentially unstable performance near the 

operating point.    

 A recent trend in the development of pattern classification methods is the increasing 

popularity of hybrid and meta-classifiers, which combine two or more component classifiers in 

an overall classification scheme.  These methods have been shown in many instances to provide 

improved performance and robust behavior in several applications [22-24].  There are various 

design considerations in the construction of a meta-classifier: the training data used for each 

component, the selection of component classifiers, and the structure of the meta-classifier.  

Training data can be sampled randomly using a technique termed bootstrapping, or specifically 

tailored for each component to accomplish a specific task (i.e. context-dependent training).  

Component classifiers can all be of the same type, such as a collection of classification trees used 

in the Random Forest classifier [25], or they can have distinct characteristics, as in the 
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generative/discriminative hybrid classifier frameworks [22-24].  Finally, the meta-classifier can 

be structured as a parallel combination of components, as in the Random Forest or hierarchical 

mixture of experts [26], or cascaded, as in the popular AdaBoost method [27] and several 

implementations of hybrid classifiers [23, 24].   

Materials and Methods 

The experiments conducted in this SEED effort relied extensively on data collected as part of the 

Former Camp San Luis Obispo demonstration.  Data and model fits were provided by Snyder 

Geoscience for the MetalMapper sensors with the MM/RMP model [28].  This model performs 

sequential stages of estimation: first, nonlinear estimation to determine position and the 

symmetric matrix of polarizability transients, then linear estimation of the three attitude angles 

and three principal polarizability transients, followed by parametric curve-fitting.  A total of 

1072 anomalies (887 clutter, 185 UXO) were taken from the cued identification survey and used 

for the discrimination experiments in this study.  From the set of available model parameters, a 

subset of nine features were selected; thus, the data was capable of being formatted in a 1072 by 

9 matrix.  The motivation for manual selection of a feature subset rather than using empirical 

results from feature selection algorithms was to reduce the opportunity for bias towards one of 

the classification algorithms that was to be evaluated in this study.  The most common methods 

for feature selection (either information-theoretic filter methods or classifier-dependent wrapper 

methods [29, 30]) will assume an underlying model for the distribution of anomalies in each 

class.  Therefore, the feature subset was selected based on descriptions of the physical target 

characteristics that are represented by each feature and their likelihood for representing intrinsic 

characteristics of the anomaly.  Based on this analysis, the following nine features were selected: 

 NormP0, NormP1: RMS values of P0X,P0Y,P0Z and P1X,P1Y,P1Z, which represent the 

numerical integration of the principal polarizability curves and their first moments, 

respectively. 

 P1X, P1Y, P1Z: Numerical integration of the first moment of the principal polarizability 

curves. 

 P0_R, P0_E: Measure of aspect ratio and eccentricity based on principal polarizability 

curves. 

 P1_R, P1_E: Measure of aspect ratio and eccentricity based on first moment of the 

principal polarizability curves. 

Through follow-up communications with Skip Snyder of Snyder Geoscience it was revealed that 

six of the nine features match up with the feature set they used at the recent Camp Butner 

demonstration
1
.  To illustrate the separation of UXO and clutter objects using the nine features 

selected for use in this study, a two-dimensional principal component projection of the feature 

                                                 
1
 Snyder used P1_T, equal to the average of P1Y and P1Z, in addition to P1X, P0_E, P0_R, P1_E, and P1_R. 
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set is shown in Figure 2.  The lower-dimensional subspace reveals strong clustering of the UXO, 

with greater variability observed in the clutter features 

This SEED project relied extensively on the use of large-scale Monte Carlo simulations 

to thoroughly analyze the properties and performance of the different algorithms and stages in 

the UXO discrimination scheme.  Large sets of independent classification results were generated 

by randomly-sampling from the available set of 1072 anomalies.  Two methods of sampling 

were employed in this study.  The primary means of constructing subsets of data was by 

sampling without replacement to divide the 1072 anomalies into two data sets (one for classifier 

training and a second for validation).  Alternatively, for certain experiments it was desired to 

measure the distribution of a measure or statistics (e.g. PFA @ PD =1).  In these instances, 

bootstrapping (sampling with replacement) was utilized to estimate the underlying probability 

distribution for the measure of interest.  

One of the main focuses of this SEED study was the statistical classification algorithm 

that is used in the final stages of the UXO/clutter discrimination strategy.  There are many 

possible choices for algorithms to use in this stage, and several experiments examined the 

various properties of difference classifiers to evaluate their potential for operating at PD =1.  

Table 1 lists the classifiers considered in this study, along with several significant properties.  

The third column of the table indicates whether the classifier is generative or discriminative.   

 

Figure 2. Representation of the nine-dimensional feature space in two dimensions using principal components 

analysis.  The x- and y-axis correspond to the scores along the first and second principal components, respectively.   
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Generative classifiers attempt to model the distributions of each class (i.e. UXO and 

clutter), and use that information to make classification decisions.  Discriminative classifiers do 

not attempt to learn the class-specific feature distributions and instead only attempt to learn the 

boundary line separating the two classes.  Thus, the discriminative classifier is often viewed as 

having a simpler learning task.  The second classifier property is local versus aggregate use of 

training data.  Local classifiers make a classification decision based only on the neighboring 

training samples, whereas aggregate classifiers rely on parameters that are calculated from all of 

the available training data.  A simple test for whether a classifier uses “local” or “aggregate” 

training data can be conducted by analyzing whether the classifier’s output for some test sample 

xTEST would be sensitive to the addition of a large amount of new training data at a point in 

feature space not near xTEST.  If the classifier’s output is not affected by the addition of new 

training samples, the classifier makes “local” decisions.  The final classifier property specified in 

the table is parametric versus nonparametric classifiers.  Parametric classifiers make use of a 

model to condense the information in the training data to a finite number of parameters, whereas 

a nonparametric classifier preserves the entire set of training data for making decisions on test 

data.  Thus, the storage requirements increase for nonparametric classifiers as more training data 

is acquired. 

Table 1.  List of classifier algorithms and relevant properties. 

Classifier Acronym 

Generative / 

Discriminative 

Local / 

Aggregate 

Parametric / 

Nonparametric Reference 

Generalized 

Likelihood Ratio Test GLRT Generative Aggregate Parametric [31] 

Distance Likelihood 

Ratio Test DLRT Generative Local Nonparametric [32] 

K Nearest Neighbor KNN Generative Local Nonparametric [33] 

Linear Discriminant FLD Discriminative Aggregate Parametric [33] 

Support Vector 

Machine SVM Discriminative Aggregate Parametric [26, 34] 

Relevance Vector 

Machine RVM Discriminative Aggregate Parametric [35] 

Random Forest RF Discriminative Aggregate Nonparametric [25] 

Artificial Neural 

Network ANN Discriminative Aggregate Parametric [33] 
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Results and Discussion 

Task #1: Classifier design 

The first experiments in Task #1 focused on assessment of the performance of the different 

classifiers (listed in Table 1) at PD = 1.  The performance of these classifiers was analyzed based 

on performance statistics for 1000 data sets generated using the Monte Carlo sample-without-

replacement experiment design.  Each of the 1000 test sets consisted of 100 randomly-selected 

anomalies; the remaining 972 anomalies were used for training data.  The PFA at PD =1 was 

calculated from the resulting ROC curve for each data set and each classifier.  Figure 3 shows the 

distribution of PFA values over the 1000 data sets.  In these box plots, the red line indicates the 

median value, the edges of the box correspond to the 25
th

 and 75
th

 percentile, and the whiskers 

show the extent of the remaining data points (excluding outliers, shown as red markers, which 

are above the 75
th

 percentile or below the 25
th

 percentile by more than 1.5 times the interquartile 

difference).  The DLRT and Random Forest classifiers appear to have most of the results with 

the lowest PFA values. The FLD and SVM classifiers were able to achieve low PFA for many of 

the data sets, but also have a large proportion of instances where PFA is quite high (greater than 

0.8).  The GLRT classifier has a similarly large range of PFA values, and seems to be quite 

dependent on the specific training/test data set. 

 

Figure 3.  Boxplot showing distribution of PFA at PD =1 over 1000 sets of training/test data for six classifiers.  

Red lines identify the median of the distribution and the edges of the blue box extend to the 25
th

 and 75
th

 

percentiles.  The red hash marks identify outliers that are beyond the 25
th

 and 75
th

 percentiles by more than 1.5 

times the interquartile distance. 
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 An alternative view of these experiments was generated by ranking the PFA values for the 

six classification algorithms (from 1 to 6, with 1 corresponding to the lowest PFA value) for each 

of the 1000 test cases.  A histogram of the rankings for each classifier is shown in Figure 4.  In 

this analysis based on the ranking of each classifier (in terms of PFA), the DLRT and RVM 

classifiers appear to have the best performance; i.e. for most data sets they outperform the other 

four classifiers and provide either the lowest or second-lowest PFA.  

A second experiment was set up to examine the propensity of a classifier to declare UXO 

at points in feature space where it has previously observed clutter in the training dataset.  This 

classifier property may be necessary to extend the decision boundary to encompass enough of the 

feature space to operate at PD =1. In this experiment, each classifier was trained on all available 

data, except for three randomly-selected UXO held out for use in the test set.  In the place of 

these three UXO, three observations labeled as “clutter” were inserted into the training data with 

the same feature values as the held-out UXO.  In the test stage, the classifier was evaluated on 

the three held-out UXO (with feature values matching the “clutter”-labeled observations inserted 

into the training data) and the clutter from the training set.  The performance metric calculated 

for each of the 1000 iterations in this experiment was PFA with 100% detection of the 3 hold-out 

UXO.  The rankings (by lowest PFA) across the 1000 iterations are shown in Figure 5.  The 

DLRT classifier was capable of detecting the three UXO with the lowest PFA for most datasets.  

This suggests that the DLRT is the classifier most capable of ignoring a few clutter at the 

periphery of the main UXO cluster in feature space to find UXO that are mild outliers. 

 

Figure 4.  Performance rankings for each classifier algorithm over all 1000 training/test sets corresponding to the 

results presented in Figure 3.  Each column in each subplot indicates the number of instances (out of 1000 

possible) that the classifier had the lowest PFA (rank of 1) though highest PFA (rank of 6).     
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Another comparison was made to examine the similarity of the decisions produced by 

each classifier.  If two classifiers produce decisions that are not highly correlated, then the 

combination of the classifiers may result in a system that has greater information available for 

detecting UXO, leading to higher performance with the fusion-classifier approach.  In this 

experiment, a test set was constructed by randomly drawing 10 UXO and 10 clutter items.  This 

test set was held fixed for 100 iterations of the classification study using training data that 

consisted of 150 anomalies from each class (300 in total) drawn at random.  Thus, a matrix of 

decision metrics with dimensions (nClassifiers x 100) by 20 could be constructed (where 

nClassifiers is the number of classifier algorithms considered in the experiment).  The decision 

metrics were normalized within each row of the matrix to be unit-variance and zero mean, and 

the distances between the decision outputs for each iteration (i.e. each different training set) and 

each classifier were calculated.  This distance matrix can then be decomposed using principal 

component analysis and represented in a two-dimensional space.  This technique is knows as 

multidimensional scaling [33], which attempts to represent a data set in a lower-dimensional 

space while maintaining the relative distances between points in the higher-dimensional space.  

If any individual classifier is not affected by the variability in the training set over the 100 

iterations, then the decision metrics would be identical for that classifier and the calculated 

distances would be zero, thus all 100 points for that classifier would occur at a single point in the 

multidimensional scaling subspace. 

 

Figure 5.  Performance rankings for each classifier algorithm over all 1000 training/test sets in the experiment 

testing classifier propensity to declare UXO.  Each column in each subplot indicates the number of instances (out of 

1000 possible) that the classifier had the lowest PFA (rank of 1) though highest PFA (rank of 6).     
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Figure 6.  Multidimensional scaling representation of the classifier algorithm outputs for five distinct test sets 

(corresponding to the five subplots).  Within each subplot, each point represents the set of decision metrics that 

result when using a unique set of training data.  Different marker types correspond to the different algorithms.  

Points that are close in proximity represent similar decision patterns, whereas points located far apart represent 

dissimilar classifier decision outputs. 
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The multidimensional scaling analysis was run for five different randomly-selected test 

data sets.  Each two-dimensional projection is shown in Figure 6.  Across the five test sets, there 

are some common trends.  The DLRT and SVM tend to form fairly tight groups; thus, their 

decision metrics are fairly consistent despite the variability across the 100 instances of the 

training data set.  The Random Forest and SVM classifiers are in close proximity in the MDS 

space suggesting that these two classifiers produce similar decision outputs.  The MAP classifier 

and the DLRT often appear on opposite sides of the MDS subspace, which indicates that these 

two classifiers may produce some of the most different decision outputs.  The plot also reveals 

that the MAP classifiers are particularly sensitive to the choice of training samples, based on the 

spread of the points for these classifiers. 

Another element in Task #1 was assessment of the effects of training data.  The first 

experiment, which performed a baseline evaluation of performance (PFA at PD =1), was re-run 

using significantly smaller training sets.  In this experiment, 100 anomalies were randomly-

selected for use in training (with a minimum of 20 UXO) and the remaining 972 anomalies were 

 

Figure 7.  Boxplot showing distribution of PFA at PD =1 over 1000 sets of training/test data for six classifiers when 

the amount of available training data is significantly reduced (100 anomalies, at least 20 of which are UXO).  Red 

lines identify the median of the distribution and the edges of the blue box extend to the 25
th

 and 75
th

 percentiles.  

The red hash marks identify outliers that are beyond the 25
th

 and 75
th

 percentiles by more than 1.5 times the 

interquartile distance. 
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used at the test set.  A total of 1000 iterations were run in this experiment.  The distribution of 

PFA at PD =1 is represented in Figure 7 as a boxplot.  In this scenario, the significantly reduced 

sized of the training data set results in much greater variability in PFA at PD =1.  However, the 

overall pattern of performance is little changed; the DLRT consistently is the best performing 

classifier in this reduced training data scenario. 

Another consideration is the effect of mismatch between the training and test data.  An 

experiment was run using synthetic data with mismatch between the training and test data was 

introduced by adding Gaussian noise to the test set features.  Examples of the test data for three 

different noise levels are shown in Figure 8.  In this experiment, the test data consisted of 1000 

anomalies equally split between H1 and H0 samples.  Three training set sizes were investigated 

(N=200, 400, and 1000) with equal representation of H1 and H0.  A total of 800 iterations were 

run to generate distributions of PFA at PD =1. 

The distribution of PFA at PD =1 for each classifier was represented using two statistics: 

the average and standard deviation of PFA over the 800 iterations.  These values can be 

represented as a point in a 2-D plot, as show in Figure 9 left for all classifiers.  The multiple 

points connected by a line represent the increasing mismatch between the training and test sets 

due to increasing σN.  The ideal performance point is at (0,0) in the lower left corner.  When both 

performance and predictability are considered, the DLRT1 and GMM GLRT appear to provide 

the best results.  It is worth noting that the results are fairly sensitive to some classifier 

parameters.  The DLRT classifier was run with three values of K, the sole user-specified 

classifier parameter, which determines the size of the neighborhood used to classify a new test 

sample. This sensitivity is further highlighted in Figure 9 right, which shows PFA at PD =1 for an 

extensive range of values for K, measured using 10-fold cross-validation on the entire 1072 

anomaly data set. Figure 9 right reveals that while the DLRT classifier is capable of performing 

well at PD = 1, it is sensitive to the parameter K. 

 

Figure 8.  Illustration of the variability in the synthetic data set introduced by increasing the noise σn. 
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In a similar format to Figure 9, Figure 10 shows the results for the same training set 

mismatch study using trainings sets with two larger sizes: N = 500 (left) and N = 1000 (right).  

One trend that can be observed as the size of the training data increases is the reduction in 

variability of the results for the DLRT classifier, suggested by the leftward shift of the three lines 

representing the DLRT.  Thus, the standard deviation of PFA at PD =1 for these classifiers is 

decreasing as the amount of training data increases.  This result is supported by previous studies 

that have shown the benefit of larger training set sizes for nonparametric classifiers (e.g. [36]). 

Task #2: Sensitivity to feature selection and model inversion 

In Task #2, the focus of the project shifted to the prerequisite stages in the UXO discrimination 

strategy: model inversion and feature selection.  Two studies of feature selection were motivated 

by questions about the impact of the size of the feature set on performance at PD = 1 as well as 

the most appropriate performance measure for feature selection based on empirical feature 

selection methods.   

In the first study, feature sets of various sizes were considered with four different 

classifiers.  The feature sets were organized into three characteristic groups: two time features 

(Tm), four size features (Sz), and six shape features (Sh).  The features in this experiment were 

selected after consultation with Skip Snyder at Snyder Geoscience.  The feature groups were 

evaluated individually and in combination, which produced a 12-feature superset in the latter 

case. The experiment used 10 realizations of 10-fold cross-validation, producing 100 calculations 

 

Figure 9.  Left: Effects of mismatch in the training and test data, represented by the mean PFA at PD =1 (y-axis) and 

standard deviation of PFA at PD =1 (x-axis).  PFA at PD =1 statistics are calculated from 800 training/test data sets, and 

each point represents a distinct mismatch condition (i.e. amount of noise added to produce mismatch between 

training and test data).  Right: Effect of DLRT parameter K on PF at PD =1, as measured based on 10-fold cross-

validation use the baseline data. 
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of PF at PD =1.    Figure 11 shows the distribution of PFA at PD =1 for the various individual, 

paired, and complete feature set for each of the four classifiers.  In the subplots, the number of 

features used for classification increases from the bottom (Tm) to the top (Tm+Sh+Sz).  Based 

on inspection of the median of the PFA distributions (i.e. the red line in each boxplot) for each 

feature set, there does not appear to be a strong trend in performance as a function of feature set.  

This result is not consistent with conclusions from an earlier SERDP-sponsored project (MM-

1442), where it was observed that larger feature sets provided better performance.  One possible 

explanation for the inconsistency is that the previous study used empirical feature selection 

techniques to sequentially determine the feature sets. 

A second study examined various possible performance measures for empirical 

evaluation of a feature set / classifier combination.  The most obvious measure is PFA at PD =1 

since this is the desired operating point for the designed system.  However, it may also be useful 

to measure PFA at PD = (  
 

    
) and PD = (  

 

    
), where NUXO is the number of UXO in 

the test set.  These are performance measures that correspond to nearly-perfect UXO detection 

by our system.  The area under the ROC curve (AUC) is a commonly used measure, as ROC 

curves have often been used to present the results of UXO discrimination studies.  More relevant 

to our desired operating point is AUC for PD >0.95, which calculates just the area under the 

upper part of the ROC curve.  Finally, the equal error rate (EER) was also included in this 

investigation.  The equal error rate is the value ε such that (1- PD) = PFA = ε, and it is a 

commonly-used performance measure in other fields. 

In this experiment, the sampling-without-replacement method was used to generate test 

and validation data sets, each with 50 anomalies.  The remaining 972 anomalies were used as 

training data in the DLRT classifier.  The experiment was repeated 1000 times, with each of the 

performance measures described above calculated for both the test and validation set.  The 

 

Figure 10.  Effects of mismatch between training and test data, expressed using statistics of distribution of PFA at PD 

=1, when the training set size is increased to N = 500 (left) and N=1000 (right). 
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results generated a 1000 by 12 matrix (six performance measures for both test and validation 

data sets).  Figure 12 shows the correlation matrix, i.e., the correlation between the performance 

measures over the 1000 iterations of the experiment.  The distinct blocks of pixels in the upper 

left and lower right of the image correspond to correlations of measures within the same data set.  

The blocks of pixels in the upper right and lower left correspond to correlations of performance 

measures across the two data sets. 

Within a set, the AUC for PD>0.95 is most correlated with our desired operating point 

(PFA at PD=1).  Somewhat surprisingly, there is very little correlation between PFA at PD = 1 and 

PFA at the other PD levels considered: PD = (  
 

    
) and PD = (  

 

    
).  Thus, what may be 

assessed as a good-performing feature set/classifier combination at one measure may change if 

an incrementally-lower PD is considered for the system.  Looking to the between-set results, 

there is very little correlation between any of the measures calculated on the separate data sets. 

Ideally, high correlation between PFA at PD = 1 in Set 2 and any performance measure in Set 1 

would indicate good predictive power of estimating future performance on new data.  However, 

 

Figure 11.  Boxplots showing distribution of PFA at PD =1 using seven feature sets of increasing dimensionality with 

four different classifiers. PFA distributions were calculated from 100 training/test data sets (10 repeats of 10-fold 

cross-validation). Red lines identify the median of the distribution and the edges of the blue box extend to the 25
th
 

and 75
th

 percentiles.  The red hash marks identify outliers that are beyond the 25
th

 and 75
th

 percentiles by more than 

1.5 times the interquartile distance. 
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the performance measures evaluated in this study appear to provide very little information across 

data sets. 

The model inversion stage of the UXO discrimination strategy is one place where 

mitigating the occurrence of UXO outliers is critical to improving performance at PD=1.  An 

experiment was performed to investigate a potential technique for identifying outliers generated 

by the model inversion.  This technique is based on the hypothesis that the model inversion 

process is fairly robust and consistent.  If two data files X1 and X2 are very similar, even 

identical, then the corresponding feature sets that result from model inversion should also be 

very similar.  Note that the inverse relationship does not need to hold true: due to extrinsic 

parameters in the model and different object orientations, two UXO with very different 

measurements may correctly have very similar feature representations.   

To implement this outlier measure, two matrices of correlation coefficients (RD and RF) 

were calculated. The (i
th

, j
th

) entry in RD contains the correlation between the measurements for 

the i
th

 and j
th

 anomaly. Similarly, the (i
th

, j
th

) entry in RF contains the correlation between the 

feature representations of the i
th

 and j
th

 anomaly (thus, both matrices are symmetric).  The outlier 

measure for the i
th

 anomaly is calculated based on the following equation: 

 ( )  
 

 
∑ *  (   )   (   )+
 

 

 

Figure 12.  Matrix of correlations between various performance measures calculated within and across two 

independent test sets. 
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where  * +is the indicator function, equal to one if   (   )    (   ) and zero otherwise 

(MATLAB code available in the Appendices).  The outlier measure has the effect of looking for 

dissimilarities between clusters in data-space and clusters in feature-space.  When the outlier 

metric A(i) is large, it indicates that the i
th

 anomaly is dissimilar (i.e. low correlation   (   )) to 

a number of anomalies in feature space with whom it was more similar (i.e. higher correlation 

  (   )) in data space. 

The values of the outlier metric for the 1072 anomalies in the data set are plotted in 

Figure 13 left.  Most of the anomalies have a low value of the outlier metric, indicating that the 

correlation in data space rarely exceeds correlation in feature space.  Selecting 0.1 as an arbitrary 

threshold, 64 anomalies (6%) are above this threshold and could be further investigated as 

outliers.  It is worth noting that this set of flagged anomalies contains one UXO which has a 

significantly higher outlier metric than any other UXO.  Looking at the two-dimensional 

representation of the feature space plot (Figure 13 right), it can be seen that the identified UXO 

is indeed the most significant UXO outlier
2
.  Additionally, several of the outlier clutter anomalies 

are also identified.   

Conclusions and Implications for Future Research 

Recent SERDP/ESTCP projects have focused on the development of sensors that are capable of 

consistently producing high-quality data.  However, high-quality data cannot be fully utilized 

                                                 
2
 This UXO anomaly is Master ID 1475, a 2.36 inch motor - fins, 60mm boom 

 

Figure 13.  Left: Scatter plot of the outlier identification metric A for each anomaly.  Marker color and style 

differentiates UXO and clutter.  Higher values of the outlier identification metric indicate a greater likelihood that an 

anomaly is an outlier.  Right: Scatter plot of the features in a two-dimensional space (i.e. Figure 2) with potential 

outliers identified via the outlier identification metric.  Red points identify anomalies with an outlier identification 

metric greater than 0.1 (6% of the total anomaly set).  A single UXO is identified as an outlier, and it is in fact the 

UXO that is most separate from the main cluster of UXO in feature space. 
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without the appropriate follow-on signal processing and analysis. With the goal of operating 

efficiently at PD=1, this project focused efforts on three stages present in most UXO 

discrimination strategies: classifier design, feature selection, and model inversion. 

Results from the various simulations conducted in this project suggest that careful 

consideration of PD=1 should be included as part of the algorithm selection.  This study provides 

evidence that the desire to operate at PD=1 may lead to a preference for certain algorithms in the 

stages of the discrimination strategy.  In classifier design, the DLRT classifier consistently 

performed well.  As a nonparametric, neighborhood-based classifier, the DLRT should be 

particularly appropriate for the PD=1 operating point and the types of feature space that might be 

observed in UXO discrimination.  The numerous simulations and analysis also revealed different 

behaviors by different types of classifiers when faced with UXO identical to anomalies observed 

previously, the effects of training set size, and the ability to extrapolate when training data is 

mismatched (or sparse). Due to the complexity of operating at PD = 1, it is unlikely that a single 

classifier will be sufficient, and a multistage classification approach that fuses outputs and 

decisions from multiple algorithms is most likely necessary for robust performance. Evidence 

supporting such an approach can be found in the results presented in this report.  This study also 

revealed the difficulty in estimating future performance on new data sets.  The performance 

measures most commonly used for empirical selection of feature sets exhibited very little 

correlation across test and validation data sets independently drawn from the master set of 

anomalies.  Thus, estimating the potential performance of a feature set /classifier combination at 

PD =1 has proven to be a difficult challenge.   

The investigations of sensitivity to feature set size did not produce conclusive results nor 

yield any particular recommendations for either large or small feature set size.  However, the 

investigation did reveal avenues of research that could be further explored in the future.  More 

sophisticated sensors and models have the tendency to produce larger feature sets, making the 

decision about how many features to use (e.g. 6 versus 26) a more relevant question.  

Additionally, with the use of library-matching techniques for classification and use of the 

polarizability curves as de facto “features”, a further investigation of the effect of statistical 

pattern classification techniques applied to small and large feature sets for operation at PD =1 

should be considered.  The previously-mentioned suggestion regarding classifier fusion should 

also incorporate an investigation of the most appropriate feature sets to be used in the different 

component classifiers. 

The model inversion procedure is a critical stage in the data processing, and a likely 

potential source of outliers.  The results of the experiments in this study suggest that analyzing 

model inversion results in the context of all available anomalies may be useful for identifying 

aberrant model inversions.  Because of the importance of the model inversion procedure for 

successful operation at PD =1, it will likely benefit from additional analyses such as those 

investigated in this study to further assess the model fits.  Also, the presence of outliers produced 

by the RbstMultiPrince method, and the ability to detect them based on this divergence of 
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data/feature correlation, suggest the potential for improvements to model inversion for operating 

at PD =1. 

Several of the results in this SEED project encourage further investigation; most 

significantly, the classifier characteristics observed over the various sets of experiments and the 

potential seen in the model inversion approach.  Given the uniqueness of the various classifiers 

considered (Figure 6) and the performance characteristics in different conditions of training/test 

data (Figure 7, Figure 9, and Figure 10), there is sufficient reason to believe that a follow-on 

investigation may be able to identify a method for classification that is most appropriate for PD 

=1.    
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Appendices 

MATLAB Code: Model inversion outlier identification metric 

function [OIM] = OutlierIdentificationMetric(Data,Features) 

% [OIM] = OutlierIdentificationMetric(Data,Features) 

%  

% Calculates a correlation-based measure for identifying outliers from the 

% model inversion process 

% 

% INPUTS: 

% Data - a N x D matrix of data, where D is the number of dimensions (e.g.  

% # of time samples multiplied by # of receivers) and N is the number of  

% anomalies 

% 

% Features - a N x D1 matrix of features, where D1 is the dimensionality of 

% the feature set and N is the number of anomalies as above 

%  

% OUTPUTS: 

% OIM - a N x 1 column of outlier identification metrics, where higher  

% values suggest a greater likelihood that the anomaly will be an outlier 

% in feature space 

% 

% 

  

% calculate correlation coefficients between individual measurements 

rData = corrcoef(Data.'); 

  

% calculate correlation coefficients between resulting features 

% (normalized by standard deviation) 

rFeats = corrcoef((Features./repmat(std(Features),size(Features,1),1)).'); 

  

tempD = rData-rFeats; 

  

% calculate percentage of anomalies for which correlation of data exceeds 

% correlation of features 

OIM = sum(tempD>0).'/size(tempD,1);  
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MATLAB Code: Distance likelihood ratio test (DLRT) classifier 

function  [LLRT,Yhat,PercentCorrect] = DLRTclassifier(Xtrain,Ytrain,Xtest,Ytest,K); 

% [LLRT,Yhat,PercentCorrect] = DLRTclassifier(Xtrain,Ytrain,Xtest,Ytest,K); 

%  

% Implements the Distance Likelihood Ratio Test (DLRT) classifier.   

% 

% INPUTS: 

% Xtrain - a D by N matrix of training data, where D is the number of 

%          dimensions and N is the number of training samples 

% Ytrain - a 1 by N vector of class labels {0,1} 

% Xtest - a D by NN matrix of test data 

% Ytest - a 1 by NN vector of class labels for the test data (if 

%         available).  If unavailable, input empty brackets [] 

% K - number of neighbors, must be a positive integer 

% 

% OUTPUTS: 

% LLRT - the estimates of the likelihood ratio calculated by the DLRT 

% Yhat - estimated class labels using the minimum-error threshold 

% PercentCorrect -  percentage of samples in Xtest correctly classifier (if 

%                   "Ytest" was provided), scale 0 to 100 

% 

% Reference: Remus et al. “Comparison of a distance-based likelihood ratio  

% test and k-nearest neighbor classification methods” Proceedings of the  

% IEEE Workshop on Machine Learning in Signal Processing (MLSP) 2008 

% 

% 

  

 % initialize outputs 

LLRT = zeros(1,size(Xtest,2));  

Yhat = zeros(1,size(Xtest,2));   

  

% find indices of the classes in the training data 

classes = unique(Ytrain); 

trainH1 = find(Ytrain==classes(2));  

trainH0 = find(Ytrain==classes(1)); 

  

for i = 1:size(Xtest,2); 

    distH1 = sort(sqrt(sum((Xtrain(:,trainH1) - 

repmat(Xtest(:,i),1,length(trainH1))).^2,1)));  % distances from the i-th test point 

to all H1 training samples 

 

    distH0 = sort(sqrt(sum((Xtrain(:,trainH0) - 

repmat(Xtest(:,i),1,length(trainH0))).^2,1)));  % distances from the i-th test point 

to all H0 training samples 

 

    LLRT(i) = log(numel(trainH0)/numel(trainH1)) + 

size(Xtrain,1)*log(distH0(K)/distH1(K));  % calculate the LLRT output 

end 

  

% estimate class labels using the minimum error threshold 

Yhat(LLRT>=0) = classes(2);  

Yhat(LLRT<0) = classes(1); 

  

% calculate percent correct if Ytest is provided 

if numel(Ytest) == size(Xtest,2); 

   PercentCorrect = 100*sum(Yhat==Ytest)/length(Ytest); 

else 

    PercentCorrect = nan; 

end 

  




